3.3.34 \(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [234]

3.3.34.1 Optimal result
3.3.34.2 Mathematica [A] (verified)
3.3.34.3 Rubi [A] (verified)
3.3.34.4 Maple [A] (verified)
3.3.34.5 Fricas [A] (verification not implemented)
3.3.34.6 Sympy [F(-1)]
3.3.34.7 Maxima [B] (verification not implemented)
3.3.34.8 Giac [F]
3.3.34.9 Mupad [F(-1)]

3.3.34.1 Optimal result

Integrand size = 25, antiderivative size = 160 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {25 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {25 a^3 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {13 a^3 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 \sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \]

output
25/8*a^(5/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+25/8*a^3 
*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+13/12*a^3*sec(d*x+c) 
^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*a^2*sec(d*x+c)^(5/2)*sin(d* 
x+c)*(a+a*sec(d*x+c))^(1/2)/d
 
3.3.34.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.85 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {a^3 \left (75 \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+34 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+8 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)+75 \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{24 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^3*(75*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 34*Sqrt[1 - Sec[c + d*x]]*Sec[c 
+ d*x]^(3/2) + 8*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2) + 75*Sqrt[-((-1 
 + Sec[c + d*x])*Sec[c + d*x])])*Tan[c + d*x])/(24*d*Sqrt[1 - Sec[c + d*x] 
]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.3.34.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4301, 27, 3042, 4504, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \frac {1}{3} a \int \frac {1}{2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (13 \sec (c+d x) a+9 a)dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} a \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a} (13 \sec (c+d x) a+9 a)dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (13 \csc \left (c+d x+\frac {\pi }{2}\right ) a+9 a\right )dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {1}{6} a \left (\frac {75}{4} a \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} a \left (\frac {75}{4} a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {1}{6} a \left (\frac {75}{4} a \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} a \left (\frac {75}{4} a \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{6} a \left (\frac {75}{4} a \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{6} a \left (\frac {13 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {75}{4} a \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

input
Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2),x]
 
output
(a^2*Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d) + (a* 
((13*a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + 
 (75*a*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]) 
/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4) 
)/6
 

3.3.34.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 
3.3.34.4 Maple [A] (verified)

Time = 1.88 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.44

method result size
default \(\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \left (75 \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-75 \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+150 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+68 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+16 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \tan \left (d x +c \right )\right )}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(230\)

input
int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/48/d*a^2*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(3/2)/(cos(d*x+c)+1)/(-1/(c 
os(d*x+c)+1))^(1/2)*(75*cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/ 
(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-75*arctan(1/2*(cos(d*x+c)+sin(d* 
x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+150*(-1/(co 
s(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)+68*sin(d*x+c)*(-1/(cos(d*x+c)+1)) 
^(1/2)+16*(-1/(cos(d*x+c)+1))^(1/2)*tan(d*x+c))
 
3.3.34.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 420, normalized size of antiderivative = 2.62 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {75 \, {\left (a^{2} \cos \left (d x + c\right )^{3} + a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (75 \, a^{2} \cos \left (d x + c\right )^{2} + 34 \, a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{96 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {75 \, {\left (a^{2} \cos \left (d x + c\right )^{3} + a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (75 \, a^{2} \cos \left (d x + c\right )^{2} + 34 \, a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{48 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/96*(75*(a^2*cos(d*x + c)^3 + a^2*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x 
 + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 
 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(75*a^2*cos(d*x + c)^2 + 34*a 
^2*cos(d*x + c) + 8*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
 c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), 1/48*(75*(a 
^2*cos(d*x + c)^3 + a^2*cos(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a 
*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d* 
x + c)^2 - a*cos(d*x + c) - 2*a)) + 2*(75*a^2*cos(d*x + c)^2 + 34*a^2*cos( 
d*x + c) + 8*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqr 
t(cos(d*x + c)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]
 
3.3.34.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.34.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3469 vs. \(2 (134) = 268\).

Time = 0.55 (sec) , antiderivative size = 3469, normalized size of antiderivative = 21.68 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/96*(300*sqrt(2)*a^2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c)))*sin(6*d*x + 6*c) - 28*sqrt(2)*a^2*sin(9/2*d*x + 9/2*c) + 28*sqrt( 
2)*a^2*sin(3/2*d*x + 3/2*c) - 28*(sqrt(2)*a^2*sin(9/2*d*x + 9/2*c) - sqrt( 
2)*a^2*sin(3/2*d*x + 3/2*c))*cos(6*d*x + 6*c) - 300*(sqrt(2)*a^2*sin(6*d*x 
 + 6*c) + 3*sqrt(2)*a^2*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
+ 3/2*c))) + 3*sqrt(2)*a^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d 
*x + 3/2*c))))*cos(11/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
)) - 12*(7*sqrt(2)*a^2*sin(9/2*d*x + 9/2*c) - 7*sqrt(2)*a^2*sin(3/2*d*x + 
3/2*c) - 114*sqrt(2)*a^2*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x 
 + 3/2*c))) + 114*sqrt(2)*a^2*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/ 
2*d*x + 3/2*c))) + 75*sqrt(2)*a^2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co 
s(3/2*d*x + 3/2*c))))*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c))) - 456*(sqrt(2)*a^2*sin(6*d*x + 6*c) + 3*sqrt(2)*a^2*sin(4/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(7/3*arctan2(sin(3/2*d 
*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 456*(sqrt(2)*a^2*sin(6*d*x + 6*c) + 
3*sqrt(2)*a^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) 
)*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12*(7*sqr 
t(2)*a^2*sin(9/2*d*x + 9/2*c) - 7*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 75*sq 
rt(2)*a^2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*co 
s(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 75*(a^2*co...
 
3.3.34.8 Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.34.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int((a + a/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(3/2),x)
 
output
int((a + a/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(3/2), x)